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1 Executive Summary

In order to demonstrate the feasibility of quantum games, we proposed to implement a
proof-of-principle quantum public goods game, and to experimentally demonstrate that the
quantum performance of the game exceeds the ideal performance of its classical analogue.
We have successfully implemented such a game, and its experimental performance clearly
exceeds the ideal performance of the classical public goods game. In fact, the ratio of the
quantum to classical performance increases linearly with the number of players. Measured
player expectation for the quantum game was measured to be within statistical error of
theoretical predictions.

In order to experimentally implement the quantum public goods game, several key experi-
mental and theoretical developments were necessary. The key experimental components were
a frequency-degenerate source of entangled photon pairs, a two-qubit entangling gate (such
as a controlled-NOT gate), and four fast single-photon detectors acting as a measurement
array. The entangled photon source is the first telecom-band source of degenerate-frequency
entangled photons, and was characterized to have a 96 + 1% fidelity with a maximally en-
tangled state and a 97 + 4% Hong-Ou-Mandel dip visibility. This source utilizes reverse
Hong-Ou-Mandel interference inside a Sagnac-loop configuration to deterministically split
identical photon pairs into separate spatial modes. The quantum controlled-NOT gate per-
forms the entangling operation which links player actions. Its process fidelity was bounded
to be between 91% and 95%. As part of the CNOT measurement process, we additionally
developed a new method of detecting and compensating for systematic errors in multi-qubit
quantum processes.

Theoretical progress began with the formalization of the quantum public goods game
and the classification of its equilibria. This classification was successfully performed for all
proposed versions of the quantum game. The most significant theoretical insight gained
during this work, however, concerns the reclassification of quantum games as adversarial
quantum communications protocols (in contrast to cooperative quantum communications
protocols, such as quantum key distribution). From within this broader class of adversarial
protocols we performed a detailed analysis of the SYMMETRIC PRIVATE INFORMATION
RETRIEVAL protocol, and conclude that it is an ideal candidate for near-term experimental
implementation.

This report is organized as follows. Section 2 briefly reviews the proposed work. Section 3
details the development and characterization of the first LOQC-compatible source of telecom-
band entangled photon pairs. Section 4 discusses the development and characterization of
the entangling quantum controlled-NOT gate. Section 5 briefly discusses the detector array.
Section 6 details the implementation of the quantum game itself. Section 7 summarizes
theoretical work performed as part of the seedling. Finally, Section 8 summarizes these
results and provides a list of all milestones and relevant metrics.



2 Review of the Seedling Proposal

In order to demonstrate the feasibility of quantum games, we proposed to experimentally
implement a proof-of-principle quantum public goods game, and to experimentally demon-
strate that the quantum performance of that game exceeds the ideal performance of its
classical analogue. This (now successful) implementation would demonstrate the functional-
ity of key experimental components of optical quantum games: sources of entangled photon
pairs, reliable single-qubit transformations, and high-fidelity two-qubit entangling opera-
tions. In addition, this would be the first proof-of-principle realization of a multi-party
quantum game—the key first step towards the more complicated and general quantum pro-
tocols which would be the focus of a full program on quantum games.

2.1 The Classical Public Goods Game

Here we define a simple version of a more general public goods game [1]. In this game, there
are only two goods of value, the public good and the private good. Each player possesses
some amount of the private good, which can be thought of as their personal wealth. The
public good is equally valuable to all players, and each player receives the full benefit of the
public good. In other words, if the public good was $1, then each player would value it as if
they had an extra $1 of their private good. The goal of each player is to play the game in
such a way that the sum of the public good and their individual private good is maximized.
The players in the game have the option of using some or all of their private good for the
purpose of increasing the public good. The sole choice each player receives when playing the
game is whether or not to contribute to the public good. Before analyzing the outcome of
this game, we define the variables involved:

n Number of players, indexed by k,

Yk Initial endowment of private good for player k,

Ch Amount of contribution of player & to the public good, and
z(cq, ..., cr)  Amount of public good as a function of total contributions.

Ey Final expectation per player, equal to x(cy,...,cx) + yr — c.

In order to study the dynamics of the game, it is necessary to know how personal con-
tributions increase the public good. We assume private contributions linearly increase the
public good, such that:

acy
ElCrys s yp) = —_— (1)
n
k
where a/n is the rate at which private contributions (c¢) are transformed into the public
good (x). For ease of analysis, assume that each player starts with 1 unit of private good
(yr = 1). Further assume that each player must choose to donate either all of their private
good (contribute) or none of it (defect). For the case where a < 1, it is always rational and
efficient for each player to defect (even if everyone contributes, no one will benefit). For
a > n, it is always rational and efficient for each player to contribute (even if only one player
contributes, that player will still benefit).



The case of interest is when:
1<a<n. (2)

Here the rational, equilibrium outcome is for every player to defect, creating an expectation
per player of
Ep=1. (3)

In contrast, the efficient outcome is when everv playver contributes. increasing the expectation
to:

Ek = a. (4)

The goal of a quantum extension of this classical game is to use entanglement and quantum
measurement to extend a player’s choices such that a rational equilibrium exists which is
more efficient that the classical maximum of E, = 1.

2.2 The Quantum Public Goods Game

A quantum extension to this classical game was first proposed by Chen, Hogg, and Beausoleil
[1], and is summarized here. This quantum protocol models a players choice of whether to
contribute or defect as a probabilistic combination of unitary operations on shared entangled
photon pairs. Unitary operations exist which model the classical choices of “contribute” or
“defect”, and if each player restricts themselves to only these choices, then the classical game
will be exactly reproduced. However, because any general quantum operation is allowed, the
players’ strategies can be extended to take advantage of the entanglement shared between
players. Taking into account these more general operations, it can be proven that a rational
equilibrium exists which has greater expectation per player than in the classical game.

The physical operation of the protocol is shown in Figure 1, and consists of the following
steps:

1. The referee distributes entangled photon pairs to the players. Each player shares one
half of an entangled pair with each of their nearest neighbors.

2. Players perform quantum operations on the two photons they control and return the
photons to the referee. These quantum operations implement each player’s strategy.

3. The referee applies an entangling operation, equivalent to a CNOT gate and a basis
transformation, to each of the photon pairs.

4. A measurement is made on each photon. If either of a player’s photons is measured
in the “0” state, that player is required to contribute. If both of a player’s photons
are measured in the “1” state, that player defects (does not contribute). (An alternate
implementation of the game allows partial contributions; in this version a player’s con-
tribution is proportional to the number of measured “0” states among their photons.)

While the protocol described above distributes entanglement only to nearest neighbors,
this protocol could also be carried out by distributing entangled pairs between each player
and each other player (full pair-wise entanglement). The latter variation requires more
entangled states and more quantum gates, but results in a higher expectation per player.
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Figure 1: Experimental steps in the 3-player quantum public goods protocol. (1) The
referee distributes entangled photon pairs to players A, B, and C. Each player shares one
half of an entangled pair with each of their nearest neighbors. (2) Players perform quantum
operations on the two photons they control and return the photons to the referee. These
quantum operations implement each player’s strategy. (3) The referee applies an entangling
operation, equivalent to a CNOT gate and a basis transformation, to each of the photon pairs.
(4) A measurement is made on each photon. If either of a player’s photons is measured in the
“0” state, that player is required to contribute. If both of a player’s photons are measured
in the “1” state, that player defects (does not contribute).

Another variation in the protocol allows partial contribution per player. In this variation,
each of a player’s qubits that are measured represent a fraction of that player’s contribution,



so in the case shown in Figure 1, a player contributes nothing if both of his/her photons
are measured in the “1” state, contributes % if one photon is measured in the “1” state and
one photon is measured in the “0” state, and contributes 1 if both photons are measured in
the “0” state. The expectation per player for all of these variations is summarized in the
following table:

Full Contribution | Partial Contribution
Nearest Neighbor Entanglement (14 3a)/4 (14+a)/2
Full Pairwise Entanglement | a —2-""D(a — 1) (1+a)/2

The strategies that lead to these equilibria are mixed, in other words, the players proba-
bilistically choose between two unitary transformations when acting on their photonic qubits.
In practice this could be performed with quickly varying electro-optic modulators, or for our
proof-of-principle experiment, by changing the setting of a wave plate or fiber polarization
controller from one run of the experiment to another. A general proof of the equilibrium
expectations per player cited above can be found in [1].

It is important to note that [1] also discusses the use of “full entanglement”, i.e., a quan-
tum state that represents simultaneous entanglement between every player, instead of many
bipartite entangled states as in the above algorithm. Full entanglement, while theoretically
convenient, is prohibitively difficult to implement experimentally. It is the fact that this al-
gorithm requires only bipartite entangled states what makes it feasible to implement, and a
key focus of a larger program in quantum games will be to develop algorithms which require
only bipartite entangled states, as it is feasible to reliably produce these types of photon
pairs in large quantities.

2.3 Proposed Research

A practical quantum public goods protocol has the potential to mitigate the free-rider prob-
lem, rewarding individual participation in consensus-based decision making. A practical
quantum auction protocol has the potential to increase government revenue by allowing
more complicated and secure bidding strategies. Here we proposed to build an experimental
system which demonstrates that the implementation of quantum games is currently feasible.
To that end, we proposed to build and characterize a proof-of-principle experiment which
demonstrates that a quantum public goods game is feasible.

In addition, we proposed to carry out simultaneous theoretical investigations. These
included: Analyzing the quantum public goods game presented here; designing a blueprint
for the development of a practical quantum auction protocol; investigating how quantum
protocols can add security to competitive situations; and analyzing the feasibility of running
multi-party quantum games over metro-distance optical fiber.

3 LOQC-compatible Source of Entangled Photons

We have constructed and experimentally characterized the first fiber-based source of degen-
erate, polarization-entangled photon pairs in the telecom band. Our source design utilizes
an optical-fiber Sagnac loop that is pumped with bichromatic pump pulses and aligned to



deterministically separate the degenerate photon pairs. The source exhibits 0.96 £ 0.01 fi-
delity with a maximally entangled state, measured using quantum state tomography, and a
HOM interference visibility of 0.97 £+ 0.04 when configured to produce identical photon pairs.

3.1 Experimental Configuration

Photon pairs can be generated in optical fibers by means of the spontaneous four-wave
mixing (FWM) process [2], wherein two pump photons scatter, while conserving energy and
momentum, to create a pair of time-energy entangled daughter photons (historically called
the signal and idler photons). Using a dual-frequency pump, frequency-degenerate pairs are
created that are indistinguishable in all degrees of freedom: spatial mode, temporal profile,
and polarization. Because the daughter photons in the degenerate case populate exactly the
same total mode, their deterministic separation into distinct spatial modes is a challenge
that this source was built to overcome.

Degenerate photon pairs are deterministically separated into distinct spatial modes when
they are created in a Sagnac-loop-based “quantum splitter” topology. This configuration
consists of a 50/50 fiber coupler, a piece of dispersion-shifted fiber used as the non-linear
medium, and a fiber polarization controller (FPC). This type of optical fiber Sagnac loop
(OFSL) is a well-known tool in optics [3]; by controlling the unitary rotation performed by
the FPC, it is possible to cause all input light to the OFSL to be either totally transmitted or
totally reflected. By choosing a middle ground in partially transmissive, partially reflective
domain, and setting the phase between the clockwise and counter-clockwise spatial modes us-
ing FPC, reverse Hong-Ou-Mandel interference guarantees that exactly one daughter photon
is emitted into each output spatial mode [4]. This alignment of the FPC is done by mini-
mizing directly measured probability that generated photon pairs bunch in the same spatial
mode when exiting the OFSL. The pair bunching probability is measured directly using a
50-50 coupler to split one output of the OFSL and collecting bunched-pair-originated coin-
cidence counts between the two outputs of the 50-50 coupler, as well as split-pair-generated
coincidence counts between the other OFSL output and either output of the 50-50 coupler.

A dual-wavelength, diagonally polarized pump pulse (ID,(,‘”’“J?))) spontaneously four-wave
mixes into two co-polarized, spatially separated, central-wavelength signal (| D)) and idler
(|;)) photons through the following process: ]D,E,wl’“’z)) — |Dg)|D;), where |D;) = (|H;) +
|V;))/v/2, for j = s,i. Note that these photon pairs are time-energy entangled, but not
polarization entangled.

Our source, shown in Figure 2, exploits this process to create degenerate-frequency po-
larization entanglement. Entanglement generation requires that a distinguishing degree of
freedom be coupled to the pump polarization before spontaneous four-wave mixing and
that this distinguishing information be subsequently erased, causing pairs of orthogonally-
polarized photon-pair amplitudes to superpose. Consider the diagonally polarized pump
pulses |D,(,wl’w2)). After a polarization dependent time delay ¢’, the pump state can be de-
scribed by ([HS 2y so|t4-1) +|V,“"?)y 1)) /v/2. Degenerate pair production (from reverse
Hong-Ou-Mandel interference between the spontaneous four-wave mixing amplitudes) is then
described by [H\" Y @[t +t")+ |V, N @ |t) — |HH,) ®|t+1')+|V,V;)®|t). By subjecting
these degenerate photons to a second and complementary polarization-dependent time delay
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Figure 2: Polarization entanglement generation. Dual-wavelength diagonally polarized pump en-
ters pump PDD where horizontal pump component is slid behind vertical in time by 1.12ns. The
pumps enter the non-linear medium in state |H)|t2) + |V)|t1) at each wavelength and generate
photon pairs in state |[HH)|t2) + |VV)|t1) at the central wavelength. We then slide the polariza-
tion components back in time in signal and idler PDDs and get the maximally entangled state
|HH) +|VV). SFWM - spontaneous four-wave mixing; DSF - dispersion-shifted fiber; FPC - fiber
polarization controller in the Sagnac loop.

we produce the maximally entangled state 27V2(|H,H;) + |V,V;)) ® |t).

Experimentally, we create each polarization-dependent time delay (PDD) by using free-
space optical delay lines and a polarizing beam splitter in a Michelson configuration. An
alternative method for achieving temporal separation and recombination of polarization com-
ponents uses polarization maintaining (PM) fibers cut to identical lengths [5]. Note that the
polarization-dependent time delays in this degenerate entangled-pair creation scheme are
exactly analogous to the polarization-dependent spatial-mode couplings and decouplings in
the counter-propagating scheme for non-degenerate entangled-photon-pair production [6].

The experimental setup has two main parts: pump preparation and the entanglement
source. Dual-wavelength pump pulses are obtained by spectrally carving the output of a
femtosecond laser. The detailed arrangement is similar to that in Ref. [4]. Before the pulses
enter the pump PDD, using a fiber polarization controller, the pump polarization is set to
diagonal with respect to polarizing beam splitter at the pump PDD input. The horizontal
component of the dual-wavelength pump pulse emerges from the PDD delayed by 1.12ns
relative to the vertical component. The temporal overlap of the two pump wavelengths’
pulses is controlled using a translation stage in the second pump filter.

In the experimental setup of the entanglement source, the Sagnac loop is preceded by a
circulator, which redirects photons reflected by the Sagnac loop to the idler output spatial
mode. Spontaneous Raman scattering in the dispersion-shifted fiber is suppressed by cooling
the fiber to 77 K using liquid nitrogen [7]. Separate signal and idler polarization PDDs in
the output paths superpose the orthogonally polarized FWM amplitudes. The degenerate
FWM photons are then selected by two optical bandpass filters. The filtered signal and
idler photons pass through polarization analyzers and are detected using four single-photon
detectors (NuCrypt LLC, Model SPD 1000) made with gated InGaAs avalanche photodi-
odes. The detection rate was 8.3 MHz and the average dark-count probability for the four
detectors was 3 x 107* per pulse. To make sure the polarization bases are overlapped in
all PDDs, the polarizations incident on the signal and idler PDDs are adjusted using their
input waveplates such that the three output pulses, observed on an oscilloscope, merge into
one (the components that are twice delayed or twice advanced are eliminated). The PDD



delay is set to 1.12ns, in order to slide the small cross-polarized FWM component out of the
1ns-wide detection window. To ensure that the path difference between PDD arms is the
same in all three PDDs (to within a tenth of a picosecond), we use optimization by degree of
polarization. By passing pulsed light through two PDDs in sequence onto a polarimeter, one
can use translation stages in the PDD arms to maximize the output degree of polarization,
which sensitively depends on the time overlap of the horizontally and vertically polarized
pulses.
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Figure 3: (a) Filter spectra. Diffraction grating filter spectra for dual-wavelength pumps (blue)
and optical band pass filter spectra at the signal and idler wavelength (pink). Pump central
wavelengths are 1546 nm and 1556 nm, pulse width ~ 5ps, FWHM ~ 0.6 nm for each passband.
The center (signal/idler) wavelength is 1550.92 nm, passband ~ 0.8nm. (b) Absolute value of
the reconstructed density matrix of generated polarization entangled state close to |HH) + |VV).
Collected over 8 x 107 detector gates at detection rate of 8.3 MHz. (c) Measured Hong-Ou-Mandel
dip (dots) and Gaussian fit (red line). Shown are the coincidence counts vs translation stage setting
which controls time of arrival of photons to the 50/50 coupler. Counts were collected for 60s at
detection rate of 785 kHz at average pump power 1004 W entering the nonlinear fiber spool. The
displayed coincidence counts exclude dark count-generated coincidence counts.

3.2 Source Characterization

We characterize the degenerate pholarization entangled source in two ways. The degeneracy
is tested by means of Hong-Ou-Mandel interference and the entanglement via quantum state
tomography. Tomographic state reconstruction requires experimentally projecting the polar-
ization state of the photon pair into a certain number of known states (in our case thirty-six
states [8]) using the polarization analyzers (consisting of a quarter-wave plate, a half-wave
plate and a polarizing beam splitter). For each setting of the polarization analyzers’ wave-
plates (corresponding to one measurement configuration), photon counts are collected at all
four output ports of the signal and idler arm polarizing beam splitters. When two detectors
fire in the same triggered time slot, we call the event a “coincidence” count. The collected
coincidence counts in the thirty six measurement configurations are fed to a maximum like-
lihood tomography algorithm which finds the physical density matrix most likely to have
produced the measured data [9].

The reconstructed density matrix of the polarization state of the generated photon pairs
is shown in Figure 3b. Its “general Bell fidelity” [10] is F' = 0.96 £ 0.01, tangle [11] T =
0.84 + 0.03 and linear entropy [11] S,y = 0.10 £ 0.02. Output state quality is sensitive to
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any timing information which distinguishes the pair’s polarization components. Preliminary
studies show that polarization maintaining (PM) fibers may provide even greater precision
than the current free-space PDD designs. The PDD PM fibers would also avoid another
obstacle: the free-space PDD setup is vulnerable to phase stability changes due to air currents
(which have been minimized by constructing enclosures around the PDDs).

A high HOM interference visibility ensures that photon pairs are in identical spatiotem-
poral modes [12]. To check the spatial and time-frequency mode overlap of the pairs, we fixed
the polarization mode of the photons by using single-polarization dual-wavelength pump. In
a slightly modified experimental setup, the generated co-polarized signal and idler photons
each pass through a free-space optical delay line (for variable delay) with a polarizer and a
pair of waveplates (for polarization overlap control), and through an optical band pass filter
(to reject the pump photons). Then the photons meet on an in-fiber 50-50 coupler (i.e.,
a beam splitter) where the HOM interference takes place. The output ports of the 50-50
coupler are sent to two custom avalanche photodiode single photon counters for coincidence
detection. The HOM experiment is performed by measuring the coincidence count rate as
a function of the relative time delay between the signal and idler photons (equivalent to the
overlap between the two identical photon wave-packets).

The measured HOM dip is shown in Figure 3c. Only dark count-induced coincidences
were subtracted from the directly measured coincidence counts [13]. The dip visibility,
defined as the ratio of dip depth and offset, is 0.97 £ 0.04. We have measured separately the
background of coincidences that mainly amount for the remaining 3%. They occur when two
photons come down signal path together and split at the 50-50 coupler half the time to give
a coincidence count, combined with such contribution from two photons coming down idler
path. These occurrences of more than one photon per arm are primarily due to multipair
generation (higher order terms in FWM) and a remaining small probability of photon pairs
bunching at the Sagnac loop output, due to imperfect Sagnac’s FPC adjustment in setting
the reverse HOM operation at the Sagnac loop 50-50 coupler.

4 The Quantum Controlled-NoT Gate

An entangling, two-qubit operation is necessary to implement the quantum public goods
game. Here we use the controlled-NOT (CNOT) gate as our maximally entangling operation,
operating in the polarization basis. In the process of characterizing our CNOT gate, we
developed a technique for analyzing the CNOT gate in its single-photon operational basis
that we then used to compensate for systematic errors in the measurement setup. To explain
this compensation technique, we first review in detail the operation of the CNOT gate,
whether used with single-photon inputs or two-photon inputs.

4.1 The CNOT operator

Entangling gates are a fundamental primitive for scalable quantum information processing
[14]. The CNOT gate is an example of a maximally entangling gate which allows the state
of one qubit (the ‘control’ qubit) to conditionally flip the state of another qubit (the ‘target’
qubit). In the two-qubit basis {00,01, 10, 11} (the first digit denotes the value of the control,
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the second the value of the target), the CNOT gate is defined by the unitary matrix:

(00[ (01| (10 (11|

0oy /1 0 0 0
Sl o 1 0 o0 i
Uovor= oy 0o 0 o 1 | (5)
m\o o 1 o0

In this canonical basis, the CNOT gate appears to perform a very classical function. Its
entangling character is not revealed until it operates on superposed input states. When
operating on the completely separable 1nput state — (|0) 4 |1)) ® [0), the CNOT gate out-

puts the maximally entangled Bell state —= (|OO) - |11)) This entangling operation can
furthermore be utilized in reverse, tlansformlng a CNOT gate into a Bell measurement:

CNOT
—

(100) + [11)) (l0>+|1))® 10)

Sl

(joo) — J11)) X (vo> 1)) ® |0)

=Sl

CNOT

Slrsl-gl

= (01) +[10)) == 7 (10) + 1)) ® |1)
~_ (o1 - 10)) 2 L (10— )y ® ). (6)

Sl
I~

Each of the four maximally entangled Bell states is rotated to or from one of four separable
states (which can be more easily experimentally measured or created).

This operation, while clearly very useful for quantum information processing, requires
there to be a direct interaction between the two qubits. For photons, where there is no
appreciable coupling between two single photons, this is a daunting requirement. In order to
overcome this obstacle, Knill, LaFlamme, and Milburn proposed instead using the quantum
mechanical measurement process to provide the massive nonlinearity necessary to couple two
single photons [15, 16]. This computational paradigm allows nondeterministic but scalable
two-photon gates to be created using only linear optics.

4.2 Implementing the CNOT using linear optics

Linear optics quantum computing (LOQC) [15, 16] is a quantum information processing
paradigm which relies solely on linear optical elements and single-photon counters to achieve
scalable computation. The LOQC CNOT gate described here, for example, acts exactly as
a standard quantum CNOT gate, except that it is only successful 1/9 of the time, where
success is defined by exactly one photon being measured in each of the control and target
outputs. This general LOQC gate can be encoded using either spatial or polarization qubits,
and physical implementations for both encodings are shown in Figure 4.

The spatial and polarization encodings are equivalent, and each perform the CNOT
operation outlined in Equation 5 with a success probability of 1/9. Because these gates are
constructed using only linear optics, it is possible to describe their complete operation using
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' - Hadamard Gate

I = Swap Gate

Figure 4: Pictorial diagrams of two physical implementations for a linear optics CNOT gate.
(a) A spatially-encoded CNOT gate. Cy and C label the 0 and 1 modes of the control qubit,
whereas Ty and T denote the canonical basis states of the target qubit. Beamsplitters are
colored to indicate their reflectivity, green for R = % and blue for R = % In each case the grey
side of the beamsplitter provides an e'™ phase on reflection. (b) The same gate implemented
using two polarization-encoded qubits. Here the horizontal and vertical polarization states
define the logical qubit basis according to the rules |0) = |H) and |1) = |V). Swap and
Hadamard gates can be implemented with half-waveplates at 45° and 22.5°, respectively.
The partially polarizing beam splitter (PPBS) perfectly reflects vertically polarized light
(Rv = 1) and partially reflects horizontally polarized light (Ry = 3). The grey side of the
PPBS provides an €™ phase to horizontally polarized light on relfection.

only single-photon transformations. When a single control photon and a single target photon
are input to the gate, the CNOT operates on a vector space spanned by the four-element
two-photon basis {CyTy, CoT1, C1Ty, C1T1}. When a single photon in either the control or
target is input, the gate operates on a vector space defined by a four-element single-photon
basis: {Cy, C1, Ty, T1}, where C; and T; denote the control and target modes for the state
|i). By breaking up the CNOT’s operation into four steps, and tracking how these four
single-photon inputs evolve at each stage, Figure 5 plots the step-by-step evolution of each
single-photon input, for both the spatial and polarization encodings. Note that at every
step, the spatial and polarization encodings are equivalent.

The single-photon creation operators aTCT and aTT1 operating on the total vacuum state |0)
describe photons which populate the modes C; and T;. For readability, we will refer to these
creation operators through the use of the “hatted” operators C = a‘Lqu and T = aTTI. Using
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Figure 5: Graphical representation of the single-photon transformations performed by both the
spatially-encoded and polarization-encoded linear optics CNOT gates. Optical elements are labelled
as in Figure 1. As it travels through successive components of the gate, each photon evolves into
a superposition of different spatial/polarization modes. These superposed modes are graphically
depicted after each major CNOT component, with each vertical box depicting a single term of the
superposition. Each box is faded in inverse proportion to its term’s amplitude (the amplitude is
explicitly noted below the photon). (a) Evolution of the state ¢}joy into the single-photon superpo-
sition /I (¢} +vack) i), and of the state ¢};i0) into the single-photon superposition /T (¢}, + vac) o).
Note that these two processes are identical. (b) Evolution of ¢} o) into /I (-¢],, +1],, +17],) 0.

1/V 3

(c) Evolution of 7, ,i0) into /T (¢}, + 7}, +74)10. (d) Evolution of 7}, 10) into /T (¢1,,, +7],,, - 7%) i0).
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this notation, the CNOT single-photon transformations are:

o 1/ A
‘E?¢g®+ﬁ@) (7)

o 1/ ot or |
P 5({q+ﬁ+7ﬂ (8)

CNOT Iy A A
nor JH(er+ 7+ 1) )

N ¥ Fan s
@g‘%xd+ﬂ—ﬁ) (10)

where C'y and T'x represent creation operators for two ancillary dump modes into which
input photons are probabilistically lost. In order to derive the two-photon operation for
the same gate, we have only to apply the above transformations to the standard basis of

two-photon inputs:

i

it

i

CNOT
s

(}H@xﬂﬂ+ﬁ+ﬂ)
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QI = | =

(- 16 - it + BT + 1T
T + YT+ T} ) (13)

p@+ﬁ+ﬁﬂ@+ﬁ—ﬂ)

QI = o =

(- clet + ¢t + Ot + T3

T, + T} - £{T}). (14)

In each case the superposed term corresponding to successful CNOT operation has been
underlined; all other terms do not have a single control photon (in mode Cj or () and
a single target photon (in mode Ty or T7). The derivation of Equation 13 is graphically

depicted in Figure 6.
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Figure 6: The operation of spatially-encoded and polarization-encoded linear optical CNOT
gates on the input state |10), i.e., the two-photon evolution of the state C]7}|0) into the
superposition state %( ~ CIC! - CITY + TIT + TITY + @ TP 4 TJT{) |0). Note
that this depiction uses the same style as Figure 5, except that now each superposed term is
represented by a box with {wo photons. At the conclusion of the gate the two-photon state
is in a 7-term superposition, only one of which represents exactly one control photon and

one target photon. This term, \/g (C;‘TIT ) |0), corresponds to a the correct CNOT output

1

|11). The square of the amplitude of this term is g,

optical CNOT gate.

the success probability of the linear

4.3 Experimental layout of the CNOT gate

Once created, the degenerate input pairs are routed through single-mode fibers to the CNOT
gate inputs. This telecom-band gate, although fiber-coupled, is constructed from free-space
linear-optical components, and operates on spatially distinct, polarization encoded photonic
qubits (|H) = |0),|V) = |1)). The gate’s central components are three custom-made par-
tially polarizing beam-splitters (PPBSs). Each PPBS perfectly reflects incident vertically
polarized light while reflecting 1/3 and transmitting 2/3 of incident horizontally polarized
light. Two swap gates (half-waveplates at 45°) and two Hadamard gates (half-waveplates at
22.5°) complete the CNOT architecture, as shown in Figure 7. Note that this architecture
uses two fewer swap gates than the polarization-encoded CNOT gate shown in Figures 1-3.
The elements shown in the “CNOT Gate” section of Figure 7 therefore perform a different—

16



yet still maximally entangling two-qubit operation; because the missing waveplates are at
the inputs and outputs of the device, it is possible to use adjacent input waveplates or
measurement waveplates to compensate, in effect achieving perfect CNOT operation while
relying on fewer total components. It is these same input and output waveplate/polarizer
combinations which allow the creation and measurement of arbitrarily polarized input and
output states.

Vibrations on one of the input or output steering mirrors (not pictured) can cause a
global phase on either the control or target qubit, a phase which will naturally fluctuate in
time. Because all CNOT inputs and outputs are joint two-photon control-target states, the
CNOT operation is immune to this noise. However, noise from the stray pump which passes
through what is effectively a huge Mach-Zender fiber-interferometer bounded by the Sagnac
loop and PPBS;  is affected by this time-varying phase. In order to ensure phase-averaging
over any stray pump light that reaches the gate, a slowly varying (at 8 Hz) piezoelectric
transducer was affixed to a target input steering mirror.

4.4 CNOT gate characterization

In order to completely characterize a two-qubit quantum process, it is necessary to record
the results of at least 256 separate measurements. In practice, this many measurements can
be inconvenient, or in some cases, prohibitively difficult. Luckily, it is possible to use only
32 polarization measurements to bound the total process fidelity of any two-qubit gate [17].
This bound is given by

F(B)+ T (B) ~1< F(x) < min [F(B). F (By)]. (15)

where F (B;) is the average fidelity of the experimental results with theoretical expecta-
tions when using the basis B; for both the inputs and the outputs of the CNOT gate.
(In the experimental characterization which follows, By = {HH,HV,VH.VV} and By =
{DD,DA, AD,; AA}, where D and A denote diagonally and anti-diagonally polarized light,
respectively.) In other words, the bounds of the fidelity of an experimental process can be
obtained by measuring two complementary 16-element datasets.

After measuring the CNOT gate’s performance in these two canonical bases, we obtain
the average fidelities I (B;) = 88.6 £ 0.3% and F (By) = 89.1 + 0.3%. The measured truth
tables for these two bases are shown in Figure 8. These results bound the process fidelity
between 77.7% and 88.6%. These results, while confirming the measured gate’s entangling
character, are clearly being limited by systematic rather than statistical errors. Studying
Figure 8, one observes side-peaks, up to 10% of the height of the main peak.

We examined several potential sources of error, including multipair-production from the
source and imperfect optics in the setup. Although previous CNOT characterization has been
limited by the four-photon production from the source, this cause of systematic error had
been largely eliminated in this experiment by lowering the pump power until four-photon
events were directly measured to account for less than 5% of FWM events, limiting the
probability of any multipair-induced errors to < 2.5% [18].

Inaccurately aligned and imperfect optical elements (such as waveplates and beam split-
ters) were another potential source of error. To estimate the contribution of optics imperfec-
tions to the total error, we used classical 1550-nm light (Santec TSL-210) as the horizontal
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Figure 7: Experimental layout of the source connected to the CNOT gate. The two pumps,
designated as pumpl and pump2 enter the Sagnac loop where they produce degenerate
frequency pairs via four-wave mixing. These pairs form the control and the target input to
the CNOT gate, which meet at the first partially polarizing beam-splitter (PPBS1). In the
CNQT gate, PPBSI1 is followed by swap gates in the two paths, which are followed by two
more PPBSs, PPBS2 and PPBS3, in each arm. The measurement apparatus consists of a
half-wave plate, a quarter-wave plate and a polarizing beam-splitter in each arm followed
by the single photon detectors D1, D2, D3 and D4.PPBS, partially polarizing beam splitter;
PBS, polarizing beam splitter; HWP, half wave plate; QWP, quarter wave plate; OBPF,
optical band pass filter; QS, quantum splitter; BS, beam splitter.

= i

control, vertical control, horizontal target, and vertical target inputs, measuring the output
intensity at the each of the four output modes for each of these four inputs. This provided
a direct measurement of the absolute-squares of the amplitude terms in Equations 7-10.

Using these directly measured values in conjunction with the above equations for single-
photon evolution, we were able to predict exactly which truth table side-peaks could have
been caused by optics imperfections. From these calculations, we determined that op-
tics imperfections of the type we measured accounted for non-zero probabilities in the
In:VV/Out:VV, In:VH/Out:VH, In:AA/Out:AA, and In:DA/Out:DA elements of the truth
table, but did not account for the other eight non-zero elements.

Again turning to the single-photon-transformation picture of the CNOT gate, we noted
that the remaining errors were consistent with bunched photon inputs, i.e., when two photons
instead of one are present in a control or target input. As an example, consider the case
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Figure 8: Experimentally measured truth tables characterizing the output of the CNOT
gate. (a) The truth tables without correction for bunching in the H/V and D/A bases (| D) =

ﬁ (|H) + V), |4) = ﬁ (IH) — [V'})). The average truth table fidelity was 88.6 % 0.6%

and 89.1+0.3% for the H/V and D/A bases respectively. (b) The same data after correction
for bunching. After subtracting bunched coincidence counts, the average H/V fidelity was
94.8 £+ 0.4% and the average D/A fidelity was 95.9 £+ 0.4%. Imprefect alignment causes
the degenerate photon-pair source —with small probability-—to produce two photons in the
control or two photons in the target, i.e., bunching. Systematic errors in coincidence rates
due to this bunching effect can be directly measured by blocking either the control or target
input, and then subtracted in order to reconstruct the true CNOT gate performance.

where two vertically polarized target photons and no control photons are injected into the
CNOT gate. Using the single-photon transformations given in Equation 10:

HAply T S (O 41 -1L) (C1+ 7 - 11) o)
1/ v
= 3 (2617} + . ) 10, (16)
we can see that any bunched target vertical photons will lead to extraneous coincidences
between vertical control photons and vertical target photons; these correspond to one of the

sidepeaks in Figure 8(a) which remains unaccounted for. After following similar derivations
for other types of bunched inputs, we found that all remaining sidepeaks could be explained
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through bunching effects.

Physically, this bunching phenomenon is an artifact of an imperfectly aligned Sagnac loop
in the degnerate photon source (even in the 50/50 configuration, if the quantum splitter’s
counterclockwise and clockwise FWM components are not aligned to have identical polariza-
tions, imperfect splitting will occur). Although these bunched photons are directly measured
and minimized during source characterization, drift can still lead to some bunched photons
during gate measurement. Luckily, this source imperfection can be directly measured and
compensated for during the gate characterization.

To directly measure the coincidence counts due to photon bunching, we measure the
output coincidence counts when either the target or the control arm is blocked (in addition
to the standard measurement with both unblocked). By subtracting these bunching-induced-
coincidences, we can directly measure our gate’s performance if it had been supplied with
perfect input states. Figure 8(b) shows the Hofmann characterization of the CNOT gate
after subtraction of bunched coincidences. The compensation results in truth table fidelities
of F(B;) = 94.8 + 0.4% and F (By) = 95.9 + 0.4%, which bounds the process fidelity to
between 90.7% and 94.8%.

5 Four-detector Coincidence Counting Array

Fast, efficient detection is crucial for any LOQC gate characterization as well as for tomo-
graphic state reconstruction. The quantum state tomography requires efficient data collec-
tion as coincidence counts are measured in thirty-six projection states of the photon pair
polarization [8]. LOQC gates are inherently non-deterministic (this CNOT gate has a 1/9
probability of success); coupled with the general lack of high-efficiency telecom-band single
photon counters, this dictates that adequate detection systems are a key experimental con-
cern. Previous experiments [18] addressed this problem by using a single superconducting
single-photon detector to herald an InGaAs/InP photodiode with a gate rate of 0.8 MHz.
Here we have greatly improved the total detection system by installing an array of four
single-photon detectors (Nucrypt LLC, Model SPD 1000) to characterize the CNOT gate.
These detectors were set to an average dark count rate of 3 x 10~* per pulse and an operating
rate of 8.3 MHz. By using an array of four detectors, we can simultaneously measure the
complete four-element coincidence basis, increasing our effective data-collection rate by a
factor of 4, as well as automatically compensating for any pump intensity fluctuations. Be-
cause our coincidence counts were measured using four different pairs of detectors, we used
direct measurements and an in-situ maximum-likelihood program to compensate for both
differences in individual detector efficiencies and output polarizing beam-splitter crosstalk.
The ten-fold increase in detection rate and four-fold increase in collection rate resulted in a
total data-rate 40 times faster than the previous experiments.
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6 Implementing the Quantum Game

6.1 Experimental Configuration

The experimental configuration for the nearest neighbor quantum game is shown in Figure
1(d). In order to perform an experimental demonstration of this quantum game for large
numbers of players, we implemented a single nearest-neighbor interaction and characterized
it’s results. Each nearest-neighbor interaction consists of a single entangled pair generation,
two unitary operations performed by each of the two neighboring players, and finally an
entangling gate followed by a four-detector measurement. By performing this measurement
in sequence for each set of nearest-neighbors, it is possible to run an arbitrarily large game
with a single experimental setup.

The major experimental components for this device have already been described. Section
3 described the LOQC-compatible entangled photon source. Section 4 detailed the entan-
gling gate. Section 5 described the four-detector array. The unitary transformations which
encoded each player’s “move” were implemented using groups of waveplates which together
performed the Pauli rotations X = oy and Z = oz and the identity /. As shown in [1],
the classical game can be recreated if the players always choose I or X, corresponding to
defection or contribution, respectively. In the quantum game, the ideal player strategy is to
use is mixed, with an equal probability of performing either the Z or I operation on each
move.

6.2 Final Experimental Results

Experimental operation of the quantum game was verified using two separate methods.
First, all canonical classical and quantum game operations —pairwise combinations of I, X,
and Z—were independently tested to verify that the game system as a whole behaved as
expected. For the classical game, this required verifying that the operations I and X allowed
a player to reliable ‘contribute’ or ‘defect’, respectively. Figure 9(a) shows the truth table
for these choices. The truth table has an 82 + 4% fidelity with theory.

For the quantum game, there are no operations which can directly be interpreted as
contribution or defection, instead the optimal strategy makes use of a equal probabilistic
combination of the operations I and Z. When two neighbors choose the same operation,
they both defect. When they choose different operations, they both contribute. Figure 9(b)
shows the truth table for the canonical quantum operations. This truth table has a 77 + 4%
fidelity with theory.

Although these fidelities are not ideal, one advantage of this particular quantum game
is it’s insensitivity to operational errors. Figure 10 shows the final game results for the

nearest-neighbor-type quantum public goods game with 2 = % and ¢, = 1. Ideal curves for
both classical expectation (Fj = 1) and quantum game expectation (Ej = %) are shown

as a function of the number of players, n. Regardless of the size of the game, the experimen-
tally measured game results are within error of the ideal quantum game performance. The
quantum over classical advantage grows linearly with number of players.

21



(b)
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Figure 9: The operation of the quantum public goods game given canonical classical and
quantum operational inputs. Bar graphs show the probabilities for different contribu-
tion/defection outcomes according to different player operations. C' and D denote player
contribution and defection, respectively. I, X, and Z denote the operations oy, oy, and o,
respectively. In a full, multi-player quantum game, these choices and results would apply
to each pair of adjacent players. (a) Results for the ‘classical’ moves in the quantum public
goods game. (b) Results for the ‘quantum’ moves in the quantum public goods game.
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Figure 10: Experimental results for the multiplayer quantum game. Experimental data is
used to simulate a multiplayer quantum game where nearest neighbors share entanglement.
For the game where 2 = %, the quantum expectation per player is given by Ep = %
(shown on the graph as the pink line). The classical expectation per player for the same
game is Fy = 1 (shown on the graph as a blue line). All experimental data points are within

error of the ideal expectation per player.
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7 Theoretical Results

7.1 Formalization

We began this project by formalizing a notion of “quantum game” that includes many
of the quantum protocols that have been proposed, including the one we demonstrated
experimentally. A classical game I' consists of:

e a finite number n of players;

e a strategy space S; = {0,1,...,|S;

— 1} for each player i;

e a payoff function P, : S =5 x -+ x 5, — R for each player i.
A quantum version of I' also requires:

e a Hilbert space H; for each player ;

e amapd;:{0,1,...,|H;| — 1} — S; for each player 1,

where d; provides an interpretation of the computational basis elements of H; as pure strate-
gies for player i.

Eisert, Wilkens and Lewenstein (EWL) [19] and Marinatto and Weber (MW) [20] “quan-
tum games” should be thought of as games with quantum communication [21]. They, and
the quantum public goods game of Chen, Hogg and Beausoleil [22], are each instances of the
following quantum communication protocol:

1. A referee prepares a quantum state p € H ® H', where H = H; % --- © H,, and p is
known to the players;

2. The referee sends each player i the i*" subsystem of p;
3. Each player i acts upon his subsystem and returns it to the referee;

4. The referee acts by a unitary transformation V on the received state and measures
it in the computational basis of H, obtaining |e;...e,). The payoff to player i is

In the EWL and MW protocols, H; = C€? and d; : |b) +— b They set p =
Ul0...0)(0...0[Ut, where U = J, := (I®" +iX*")/v/2 (although Marinatto and Weber
also consider U/ which produce a less entangled initial state [20]); in the EWL protocol,
V = UT, while in the MW protocol, V = I.

This quantum protocol generalizes the notion of a game with (classical) communication
to allow for the communication of quantum information. The (standard) classical protocol
is: :

1. A referee “prepares” a classical probability distribution g € A(S), the set of convex
combinations of the elements of S, thought of as orthonormal unit vectors in RS. y is
known to the players;
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2. The referee draws a sample from i, and sends each player i the i*" component of the
sample. This is the referee’s recommendation;

3. Each player i acts upon his recommendation and returns some element of S;, possibly
chosen according to some probability distribution, to the referee;

4. The payoffs to the players are determined by the element of S received by the referee.

7.2 Equilibrium Concept for Quantum Games

Aumann defined g to be a (classical) correlated equilibrium if no player can improve his
expected payoff by not following the referee’s recommendation, i.e., returning the recom-
mendation unchanged to the referee [23].

Notice that A(S7) x --- x A(S,) € A(S), so the set of possible correlated equilibria
strictly includes the set of possible mixed strategy equilibria for I'. The set of actual cor-
related equilibria is a compact convex set containing the convex hull of the Nash equilibria
of I, and can be strictly larger, although not when the Nash equilibrium is a dominant
strategy equilibrium. (Recall that a strategy is dominant when it is the best strategy to
play, independently of the other players’ strategies.)

For this project we defined (p,V,d) to be a quantum correlated equilibrium of I' if no
player can improve his expected payoff by not acting by the identity on his subsystem. Notice
that in the quantum protocol we defined in the previous subsection, the players can act by
any quantum operation on their own subsystem before returning it to the referee. This is a
more general protocol that is usually considered —in the work of Marinatto and Weber, and
of Chen, Hogg and Beausoleil, the players are only allowed to act by convex combinations
of unitary operations. Allowing more possible operations, of course, (weakly) decreases the
set of quantum correlated equilibria.

7.3 Quantum Equilibria of the PuBLic GOODS

We consider the n = 3 version of Chen, Hogg and Beausoleil’s “quantum PUBLIC GOODS
game” [22], since this is the one that we realized experimentally. The strategy spaces are
S1 = S = S3 ={0,1}, which we think of as the players’ possible contributions. The payoff
functions are P;(s1, sg,s3) = (1 — s;) + 2(s1 + 52 + s3)/3.

The unique Nash equilibrium of this game is s; = so = s3 = 0, at which each player gets
a payoff of 1. This may be contrasted with the Pareto optimal point, s; = s, = s3 = 1, at
which each player gets a payoff of 2. The latter is not a Nash equilibrium since player 7 can
improve his payoff to 7/3 by unilaterally changing to s; = 0.

Note that s; = 0 is a dominant strategy: player i always gets a higher payoff by playing
this strategy, no matter what the other players do. As we noted above, this means that there
is no (classical) correlated equilibrium other than the Nash equilibrium.

In our formalization of Chen, Hogg and Beausoleil’s quantum version of this game [22],
H; = C? ® €%, and the interpretation of computational basis vectors as pure strategies is:

d; : [be) — 1 ifb= 1'orc= 1;
0 otherwise.
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Following Chen, Hogg and Beausoleil [22], define U = JS** @ J{**) @ JI®V| where the
superscripts indicate upon which pair of the six qubits in H each ]2 acts. Now let

p=2"23"(iZ)" = 1@ (iZ2)" ® (iZ2)2 ® (i2)® @ (iZ)% - U]000000) @
(000000|UT - ( /Z)b‘v»( iZ) @ (—iZ)2 ® (=iZ)2 ® (—iZ)% © (—iZ)%,

where the sum runs over by, ¢y, by, o, bz, c3 € {0, 1}. In this project we showed that (p, UT, d)
is a quantum correlated equilibrium (allowing the players to make arbitrary quantum op-
erations) with expected payoff 7/4 for each player —higher than the classical equilibrium
payoft.

Notice that there is some arbitrariness in this construction of a quantum version of the
PuBLic GOODS game, associated with the choice of the maps d;. The choice above forces
each player to contribute if either of his qubits is measured to be in the state [1). An
alternative choice for the interpretation of computational basis vectors as classical strategies
is:

&+ Jbc) 1 with probability (b+ c)/2;
' 0  with probability 1 — (b+ ¢)/2,

so that if both qubits are measured to be |1) or |0), the player contributes 1 or 0, respectively,
while if one qubit is measured to be |0) and the other to be |1), then the player contributes
1 with probability 1/2.

In this case we showed that (p, V, d') is a quantum correlated equilibrium and the expected
payoffs are 145/96 for each player, which is less than 7/4, but still greater than 1.

7.4 Other Adversarial Quantum Communication Protocols

Hogg, Harsha and Chen have a proposal for a quantum auction protocol [24], but it requires
multiple rounds of (coherent) communication, which makes it less amenable to near-term
experimental implementation than the PUBLIC GOODS game with quantum communication.
In addition, their protocol has not been checked for robustness against arbitrary cheating
strategies, and in our judgement is not likely to be robust.

In this seedling project, therefore, we focussed on another adversarial communication
task, SYMMETRICALLY PRIVATE INFORMATION RETRIEVAL (SPIR), namely, the problem
of querying a database of size N while keeping the query private from the database owner
and revealing only the queried register of the database [25]. It is easy to see that query
privacy can be achieved by delivering the whole database, while database privacy can be
achieved by responding only to a single query. The communication complexity of classical
protocols achieving both is O(N) [25].

Hogg and Zhang have considered quantum protocols for SPIR [26]. Giovannetti, Lloyd
and Maccone (GLM) recently proposed an efficient quantum SPIR protocol [27]. As an
abstraction of the notion of a database, consider a set of registers {0,..., N — 1} with
contents described by a function f : {0,...,N — 1} — G, where G is an abelian group
(under addition) and f(0) = 0. Then the correct response to a query x € {0,..., N — 1}
is f(x); this is implemented quantum mechanically by the unitary operator defined by Uy :
|x)|g) — |x)|lg + [(x)), where |z) is a computational basis vector in an N dimensional
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Hilbert space and |g¢) is a computational basis vector in a |G| dimensional Hilbert space.
The intended GLM protocol is:

1. The querier prepares the state |2)|0) and the state (|)[0) +]0)[0))/v/2;
2. The querier then sends one of these two states, at random, to the database owner;
3. The database owner applies /s to the state he receives and returns the result;

4. After receiving the response to his first query, the querier sends the remaining state to
the database owner;

ot

. The database owner applies U; to the state he receives and returns the result;

6. From the |z)|f(x)) response the querier can determine f(x) and then check that the
other response is correct, i.e., that the database owner has not observed the query.

Giovanetti, Lloyd and Maccone provide a privacy analysis of this protocol in [28].

The GLM protocol provides a family of increasingly complicated, but scalable (since the
communication complexity is O(log N)), possible quantum communication experiments. For
this part of the seedling project we analyzed the complexity of implementing the simplest
non-trivial instance of the GLM protocol, namely one with a 2 bit database, N = 4, of bits,
so there are 2° = 8 possible databases f.

In this case the querier must be able to produce a state |z) = |b1by), where by and by are
bits. This requires only single-qubit operations. The querier must also be able to produce
the superposition state (|z) +]0))/v2 = (|bibo) + [00))/v/2, for 0 # a = 2b; + by. This
requires single-qubit operations, and one controlled-NOT operation when x = 3.

The database owner must be able to implement the three-qubit operation Uy. Of the 8
possible databases f in this case, some are represented by very simple Uy, e.g., f(z) = 0 has
Uy = Iy, the eight-dimensional identity matrix. The most complicated cases are exemplified
by the database with f(3) =1 and f(0) = f(1) = f(2) = 0, for which Uy is the controlled-
controlled-NOT operation. This operation can be implemented using six controlled-NOT
operations [29], or more efficiently using a scheme of Ralph, Resch and Gilchrist that only
uses three two-particle operations, but does require that one of them be a qutrit, .e., a
3-level system [30]. If the third level is implemented by a third spatial mode/optical path,
and a single-qutrit operation interchanging the first and third levels is available, then the
three two-particle operations can all be implemented using exactly the same architecture as
two-qubit controlled-NOT operations targeting the first two levels of the qutrit.

7.5 Security Benefits of Quantum Communication in Adversarial
Scenarios

As the GLM quantum protocol for SPIR described in the previous subsection illustrates,
there can be security benefits to using quantum communication in adversarial scenarios.
Furthermore, by definition, the quantum correlated equilibrium for the PuBLiC GOODS
game is robust against unilateral deviations by the players. We also demonstrated that in
the state p prepared by the referee, each shared pair of qubits is in the very mixed state
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(]00)(00] + [11)(11])/2, which is effectively classical, making it robust against decoherence-
type errors.

8 Conclusion

8.1 Summary of Results

The main purpose of this seedling was to verify the feasibility of experimental quantum
games. Although the proof-of-principle implementation of a quantum public goods game
fulfilled this purpose, there were several other important experimental and theoretical suc-
cesses which made that experiment possible.

Experimentally, each component of the quantum game represents an important advance
over previous research. The LOQC-compatible source of entangled photons developed for this
seedling is the first telecom-band source of degenerate entangled photons, and was measured
to have a 96 £ 1% fidelity with a maximally entangled state. The process fidelity of the
controlled-NOT gate was—for the first time—directly measured, and bounded to between
91% and 95%. The four-detector array used for game readout represents a considerable
technological improvement over previous detection schemes.

Theoretical progress began with the formalization of the quantum public goods game
and the classification of its equilibria. We additionally reclassificatied quantum games as
adversarial quantum communications protocols (in contrast to cooperative quantum com-
munications protocols, such as quantum key distribution). From within this broader class
of adversarial protocols we performed a detailed analysis of the SYMMETRIC PRIVATE IN-
FORMATION RETRIEVAL protocol, and concluded that it is an ideal candidate for near-term
experimental implementation.

Finally, the quantum game itself was successfully demonstrated. Quantum game perfor-
mance clearly exceeded classical game peformance (by a ratio which increases linearly with
the number of players), and was within statistical errors of the theoretical predictions.

8.2 Milestones
8.2.1 Experimental Milestones

(Experimental efforts comprised roughly 5/6 of the total program).

1. Construct and characterize a degenerate, polarization entangled source of photon
pairs in the 1550-nm telecommunications band.

Complete: The entangled source had a fidelity of 96 + 1% with a maximally
entangled state and a HOM dip visibility of 97 + 4%.

2. Connect this source of degenerate, polarization entangled photon pairs, a pair of
unitary transformations (which are used to implement the players’ strategies), an
entangling gate, and a measurement / detection array. Verify the operation of this
joint system.
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Complete: The operation was verified for both classical and quantum game
moves, resulting in average truth table fidelities of 82 +4% and 77 4 4%, respectively.

Use this system to verify in a proof-of-principle experiment that a quantum public
goods game is feasible.

Complete: The quantum game exceeding the classical performance by amount
which linearly increased with number of players. Experimental data was within error
of theoretical predictions. (See Figure 10).

8.2.2 Theoretical Milestones

(Theoretical efforts comprised roughly 1/6 of the total program,).

1.

Find and classify the equilibria for the quantum public goods game.

Complete: We have classified the equilibria for both proposed versions of the
quantum public goods game, with calculated payoffs of 7/4 and 145/96 respectively
(see Section 7.3).

. Investigate a development blueprint for a next-generation quantum protocol.

Complete: Although we originally planned on developing a quantum auction
protocol, more detailed analysis showed no significant advantage over classical
analogues. We instead investigated the development blueprint for the SYMMETRIC
PRIVATE INFORMATION RETRIEVAL protocol (see Section 7.4).

Investigate security arrangements necessary to keep player strategies secret from a
referee, or, put more generally, investigate how quantum protocols can add security
to competitive situations (as opposed to collaborative situations, as in quantum key
distribution).

Complete: We have investigated the security proof for the SPIR protocol (see
Section 7.5).

. Investigate possibility of performing quantum games over metro distances.

Complete: We conclude that the best choice for near-term, metro-distance
implementation of a quantum game is the SPIR protocol.
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